UNIVERSITY OF
Illinc is library
AT URERFA.CHAMPAIGN BOOKSTACKS

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

MULTIDIMENSIONAL SCALING OF BINARY DATA FOR HOMOGENEOUS GROUPS

Robert P. Redinger and Jagdish N. Sheth
\#411

College of Commerce and Business Administration University of Illinois at Urbana-Champaign

FACULTY WORKING PAPERS

College of Commerce and Business Administration
University of Illinois at Urbana-Champaign

June 29, 1977

MULTIDIMENSIONAL SCALING OF BINARY DATA FOR HOIMOGENEOUS GROUPS

Robert P. Redinger and Jagdish N. Sheth

非411
$\therefore \ddot{\square}$ \square
\square !. \square ..
\therefore : \square $\because \quad \because$
;

MULTIDIMENSIONAL SCALING OF BINARY DATA FOR HOMOGENEOUS GROUPS

Robert P. Redinger
and
Jagdish N. Sheth
University of Illinois

ABSTRACT

A new methodology is proposed for perceptual mapping as an alternative to the nonmetric multidimensional scaling. The new methodology requires binary similarity judgments and utilizes the Ekart-Young decomposition procedure for mapping objects on a multidimensional space.

The new technique is tested with respect to mapping of fifteen brands of soft drinks. The same study also collected rank-ordered similarity judgments and utilized the standard nonmetric scaling techniques as a comparative test. As expected, binary judgments were more reliable and produced a more meaningful multidimensional space than the nonmetric procedure.

```
.. ..
. , : ::r
; - :`. \therefore!
1. ` ! i:`
```

ared
Jagoish N. ふinetr

INTRODUCTION

Inspired ioy measurcmer, in the hard sciences, the first developed techniques in mujitidimensionai scaling (c.f. 20) required the input data to be retric. However, tite recessity of using metric ciata as input required strone assumpuions about the underining psychological processes (5,11). onre method oi scaling psycholocical data wille rela\%ing the aseumptions of the zinput datz and tru renconitart cognitive processes is to collect lower oreer data (ordinal), find a function to transform this fata irco metric reprosentation. and tier: input thjo transformed data into existing netric rultudinensimal scaling technigues. Shepard (13,24) discusses the problems atvendant with this approach and as an elternative pacsents a metiod of maltidimensional sceling (refined oy
 scarfe vista metric pronerejes.

The !najor advantage of ronnerric veis metwic mutidimensionai

quantification of that criteria. Nonmetric techniques, while they do not recrire quantification, reiain the assumption of consistency of criteria. Shefarci (12) found that similarity jucignonts are likely to be influenced - \because ettention FIuctuations, and Torserson (10) reperied that the judgemendes riy or affected w contextua? Effects.

Second, althougi the nonmetric methods recuire only ordinal properties jr. t datsi, the assumprions of ordjrajity must lie met. if tre danic ordjai propertins (uroperties thar are empirically testable) are exhibited $0, \div n e$ date, ure researcher is justified in using geometric models for scailng; tilus, lhe use of nonmetric technques depends on the valicity of the undeylying ordinal assumptions (1). The more difficult the tosk, Gine more likely it is that the underlying assumptions of the psychological process and of consistency will not be met.

Task difficulty car be resolved primarily as a function of the mumber oi swimuli and the reguirenents of the task. As the number of stimui incriases, the difficulty of the task increases geonetrically. The rank ordering of similarities of all possible pairs (990) of forty-five stiruli is a more difficuit task than the rank ordering of all possinile pairs (45) ori ten stimuli. Sed and ratz (10) state trat standard methods of collecting similarities data (for example, magnitude estimation, ranking of all possible pairs, of n-dimensional rank ordering) for large stimulus sets are cumbersome and :ix render judgements meaningless. Further, different techniques require difirrent types of data, which affects task difficulty. The less invariant the date is to be (metric vs. ordinal), the more restrictive the assumptions of the 'inderlying proccss, and rence the task will be more difficult. Eor cxample, the question "How much greater is A than $B ?$ ", which would yield interval data. is a nore dirficult tash ther, that represented by the question
"Which is greater, A or B?", which wolld yield ordinal data.
The third problem associated with nonmetric techniques is that these methods require assumbtions on the part of the researchor as to the dimensionality of the underlying process and the metric to ho used for calculating distances and scaling stimuli. The calculations in these techniques are kased on the minimization of some criverion of error. Hence, if the underiying model (i.e., dinensionality and metric) is inappropriate, the procedures will calculate results capitalizing on the noise in the data, making interpreration difficult and statistical jnferences to populations or across similar experinents unlikely (1).

What is needec tion are simpler data collection procedures to hande the first two pronlems and simpler ansly=ic procedures (at least in terms of fewest assumptions) to handle the thind problem. Due to the large numer of suimuli necessaxy for many marketing studies, attention has forused on providing alternative methods of collecting orenel (similaribies) data, methods which sesically irvolve or reciuction in the mumer of judgements tre individual must make (10). Hovevoe, an alternative srifution is to reduce the difficulty of tre task by fütiner relaxing the assumptions luderlying the psychological grocess implicit in fre date collection technicus. Rather than collecting cruinal deti, the rescarcher can ostain nominal (classifactory) data or, in the simplest case of: two classes, wirary data. Green, fird, and Jain (5) anclysci associative data by assiming that the absociation frequency represented a proximit: measure of the stimuli and litijired existing reometric scaling rorlrils to arrive at thojer conficuusations. They found that the tecrajuue resulter in ing dimensionality whin was difficult to interpret. They mer the first coniition of simpler data, but not the second condition o! simpler analytic strategy which sugges:s that an alternacive method of amalysis fo essociative date may also be eppropria'e.

The remainder of the paper describes a methad of scaling associative (specifically binary) data which (1) requires as input only binary similarities cherny increasing the consistancy of the data while relaxing the assumbtions of the uncerlying cognitive process, and (2) does rot require prior specificoticr: of a geometric model (dimensionainty and nibtric). After a discussion of the tochnigus, the method is applind to the scearing of soft driniss and the rosults corpared witi; tine results fron a standard multidimemsional scaling method. Finali, the unresoived grok ens associated with this technique and the implications of the tecrnique for marketing researc: are discussed.

DESCRTPYION OE THE MODES
"inary ciete may je collected it a variety of ways, ulimately represented as the assigment of the stimplito che of two yroups. Judgements car be made regarcing an objectis possession of al attribute, or an object belonging to a choup. To collect birary similarities dota respondents would judge whether a pair of stimuli were similar or not smilar. Accumulating judgements over individuals, a frequency distribution of tine similarity of stimulusmpairs is obtained. Guttman (0) notec that a miltivariete frequency distribution is scalable if one can derive from the distribution a quantitative variable With whicn to characteize the ohjects in the populetion so that each attribute is a sinple iuncu之nn of tian quancilative variabic. Justitied by the

Supposc *r: hish to carinete the attribute suace of m arcducts ard then seane tre produras wituin tro: syoce re"yino on binam similarimies data

whther a product-peir is similar (codec 1) or rot simjar (coded o) for cach

In estimating thi relrvant attratutr space, a necessari essumption is

$$
\underline{C} \because i n=\quad-1: 1 \quad \because \because x
$$

$$
\left.c_{i, j}^{*}=\sum_{i, j} /\left(p_{i}\right)_{j}\right)^{i}=c_{j, j} /\left(c_{i} c_{j}\right)^{\frac{1}{2}}
$$

 symetric matije I, whic: is positive, semi-derinite;

$$
\underline{B}=\underline{D}^{-1} \underline{C} \underline{E}^{-\frac{1}{2}}=\underline{U}^{-\frac{1}{1}} \underline{Y}^{1} \underline{D}^{-1}=\underline{B}^{1} \text { whove } \underline{B}^{-\frac{1}{2}} \underline{y}
$$

 Wieles \hat{i} 's in the diagonal, hence fray de directly applied to principe? comperents armysis, unoukine in cac: individual. Ry haing exprested as a Iincar corbination of factor scores, \bar{A}.

$$
I_{i}=\bar{z}_{j, i} F_{1}-a_{2,2} \Gamma_{2}+\ldots+a_{j, m} F_{m}
$$

Uising the facto scores, nenups of indivicuals whth assumec similar psychological sutribute soares car the formed. The surorquent scaling of products within an attribute space should be applied scyaratoly to each homegeneots group thus identificde

Scaling Wactor inalysis

Summing over individuals, a prexuct by product square symmetric contingency tanle \underline{X} is created for the group. Again, to eliminate sample size bias, X is standariized y calculating relative frequencies and dividing by the standard deviations.

$$
x_{i, j}^{*}=x_{i, j} /\left(x_{i} x_{j}\right)^{1_{i}}
$$

This stariardized matrix, ${\underset{\sim}{x}}^{*}$, is positive, semi-definite, ond being symmetrical has rramian propertics. Since the standardizetion yields i's in the main diagonal, the matrix may be used directly in principal components analysis. X* may be directly factored into the product of prircipal components \underline{U} and
a matrix of characteristic roots, \underline{A}^{2}, in the following manner. Since x^{*} is Grampian, a matrix $\underset{M}{M}$ can be found such that $\underset{X}{ } \mathbb{M}^{*}$. Defining \underline{U} and \mathbb{W} as transformation matricies such that $\underline{U}=\underline{U}^{-1}$ and $\underline{\mathbb{W}}=\underline{W}^{-1}$, let $\mathbb{M}=\underline{U} \underline{\underline{W}}$.

Then,

$$
\underline{X}^{*}=\underline{M} \underline{M}^{\prime}=(\underline{U} \underline{\underline{W}})\left(\underline{W}^{\prime} \underline{\underline{U}} \underline{U}^{\prime}\right)=\underline{U}^{2} \underline{U}^{\prime} .
$$

Each variable, x_{j}^{*}, can then be expressed as a linear combination of scores on the principal components, E, and the product-moment correl? nations, A, between tue \#actors and the variables.

$$
\underline{X}^{*}=\underline{\underline{E}} \underset{\sim}{ } \text {; were, } \underline{A} \underline{U} \underline{A} \text {, and } F=A^{-1} \underline{U}^{1} \underline{X}^{*} \text {. }
$$

The resulting principal component vectors, which are orthogonal, represent the underlying dimensions in the psychological process. Because the results are which": only up to affine crerefomatis one the principal component vectors ma:

: sing either the rotated sniucion

$$
\ddot{Z}=\left(I^{\prime} \underline{S}_{i}^{1}-\right)^{-2} E_{-1}^{\prime}
$$

$$
\ddot{Z}=\left(\underline{B}^{\prime}\right)^{-1} \underline{\Delta}^{*} .
$$

-5 knows:

Whe factor scores represent the cestrec scale valwes a each of we products

AN MEETJCSTMOM

 Suli ectug wite ushea hin rarik vider the caris so that the top cerd was tha peit

 "

"accurate" as possihle. Finaliy, the indeptr. questioning concerning the rank order task indicated that they were not consistent in their use of criteria for judging the similarities.

RESULTS AND DISCUSSION

Points of view anaizeis was performed on both sots of data, and in both instances, onl; ore group appeared with ro outiiers. If more than one group had appeared, then separate scaling would have been ferformed for each subgroup. In this instance, all incividuals were included in each analysis. Further, the deta were anclyzed separately for eacr group to determine if the order of the tasks had any eafect on the results. There appeared to be no order effect, based on visual comparison of thin resulting maps. Therefore, the two groups were cominined and an andysis using the total sampie was performed. Because of the high degree of homogeneity between the two groups, oniy the restilts from the analysis of the totaj sammp js moesented.

Pine Rank Order Data, A group similarities matrix was calculated with cell. entries consistine of the average rank order for that product-pair; this metrix was used as input for TORSCR with the three dimensional results persenteo in Figure i. As previously mentioned, this technique requires the mijor specificatinn of a model imetric and dimensionality) and of an initial configuration. Pri this stuoy the Fuclicean distance function was chosen and 2-, 3-, 4-, and 5-dirensionai solutions calculated, each starting from a random initial configuretion. rahe scale vaiues of a solution are dependent on the rumber of dimonsions, hence, a necessery task for the researcher in applying these technimes is to chonse the number of dimensions. h possinle approach is tho choose the dimensiona? ity based on interpretabi]ity and the information provided (15). Stross valurs, measuring tho goocness of fit of the data, can
be used. Stress values for the 2-, 3-, and 4-dimensional configurations were .240, .160, and .i07 respectivel\% Primarily for the purpose of comparison with the dinary dete solutions, the three dimensional solution is presented.
 obvious interpretation of the resuits. mhis further demonstrates a problem with geometric modris, namely interpretation of the results. Several possinge muthods to aid in the jornifixation process include factor analyzing the datr and using the factor iondiros, us collerting evaluations of eacr product on varimus meoncoined oritoria ano tron fittine rearession iines using eris data to the artajaci norcequual space. also of interest in this example is that aitnough ine stress vaiue decotased for tre 4-, and 5-Gimensional solutions, intopretation ves wnt rninancau bu the addition of tree extra dimensions. mins ieadis us to conciude that Lue vnexayirug modet jmplicit in the teriniche mey not be aporopriate. He 3 boconse for the rosearchet is to continue to try odditional rodels in the hooe: - vtaning m meanir,

Mece Eiriury Data. The method of analysis described in this paper was applied to the group contingency table. Using a critecion of cither significant eigenvalues or of common versus unique factors, the factor analytic procedure yielded a solution with three factors explaining slightiy more than 80% of the variance. The elots of the rotated factor scores arpear in Figure 2.

As opnosed to the ronk-order solutions, interpretation of these dimensions semes relatively apparant. The first dimension appears to be a cola (a)termatively a daric-colored) dimension with seven productsm-coke, pepsi, Fove] Crom, ral, giet pepsi, Dr Eepper, and poot Beer--loading heavily. (Note, intorprotetion is ajcicd in this technique hy tie use of the factor 1fadings). The zecond dimension appears to be an "ur-cola" dimension (a lemonItme, citrus flavored dimension) with five producis--is.onen-un, sprite, Scuirt, niet Soven-up, and Iemon-Iimewlouding neavijy rhe third dimension appears

Mgain and mano de mivi cader dath

Srinks		$\begin{gathered} \text { Myerege } \\ \text { Fant } \\ \text { Deporer } \\ \hline \end{gathered}$	Range of Eant Orders	Drinis		Average Rank srder	$\begin{gathered} \text { Range of } \\ \text { Rank } \\ \text { orders } \\ \hline \end{gathered}$	Drinks		Average Fank order	Range of Rank orders
＝	－		－5－ 103	3	2	69.93	$7-101$	3	1	58.7	$15-103$
		\therefore ．	1－0	4	z	50.70	1－ひ	\therefore	\vdots	F0．${ }^{-}$	－ 99
，	＊		2 c －－	Σ	3	22.27	¢－	\digamma_{1}	2	5%－	3－105
	：	67	$25-20$	5	5	70.45	$40-105$	\therefore	；	65．	$24-300$
ε	－	2．	28－	\therefore	2	55.50	12－102	－		12.20	$\because-0$
，	\therefore	？	\％－-6	\％	5	70.00	$12-103$	－	\therefore	65.47	－ 103
	$=$	5	c－ 53	－	－	54.97	5－504	－	！	11.35	$3-40$
		1\％．	$\overline{-}$－χ_{2}	－	5	31.97	$6-7$	8	「	3.20	20－102
	i	枵．	\％－ y	＇	3	60.63	3i－52	2	$?$	50.07	16－303
\％	\because	ご．．	$1-59$	3	\therefore	17.00	$\therefore-49$	0	7	9.40	－ 31
－	亿	0.	$1-69$	$\stackrel{ }{ }$	5	89.27	$33-102$	$?$	4	65.55	21－ 103
\％	3	5%	2＊－4	3	$?$	55.00	二3－ 102	9	1	10.73	$1-32$
	5	5 5 ． 3	16－95	1 C	¢	29， 3	20－105	： 6	7	\％1．17	29－101
－	\because	55.03	6－105	10	5	49.90	2S－95	10	1	84.30	20－104
＊	\％	c3．03	O－T02	10	？	75.7	35－103	10	a	70.87	$29-105$
	0	． $2 \times$	－56	\because	ci	70.17	$10-102$	11	8	74.90	29－105
	－	7	$\bigcirc-102$	11	6	57.60	？－ 204	\because	5	42.30	12－104
	4	$55 . \%$	$24-30 \%$	？	3	55^{6}	9－ c_{5}	11	2	72.10	$23-103$
？		98	$\therefore \therefore$－ 104	12	12	45.0 ＂	$12-05$	12	10	45.27	$75-95$
	9	55.68	$3-105$	12	4	72.63	13－104	1.2	？	71.03	$22-105$
$\because 2$	；	72.75	23－40］	12	5	43.50	$7-100$	12	4	59.97	？：－ 105
1？	ξ	40．0\％	－ 202	12	\％	71.20	$37-203$	12	1	71.63	$10-103$
	12	35.20	¢－9a	33	is	22.75	$5-102$	13	18	19.37	－ 85
	9	83.13	$13-103$	13	8	73.33	25－105	13	7	64.37	22－102
	二	76．5	19－102	13	5	¢1．8．？	9－105	13	4	69.33	$37-302$
$=3$	2	$60.2{ }^{\text {c }}$	18 － 60	23	2	75.60	15－203	13	$\underline{1}$	59.37	31 － 101
i ${ }^{\text {a }}$	\because	－．27	：-2ε	13	12	33.73	$2-93$	14	11	13.67	－－ 80
O	20	13． 33	$1-9$	1.4	－	64.90	7－105	1.1	$¢$	70.32	$15-105$
\bigcirc	7	53.12	$8-104$	14	6	$5 \mathrm{~F} .5^{\circ}$	$22-103$	12	5	39.90	$\leqslant-103$
$\because 4$	＇s	65.47	29－104	14	3	55.50	17－105	14	2	70.23	$42-102$
14	：	$\therefore 2.47$	25－105	15	14	－ 8	$5-93$	15	13	12.07	－ 90
15	3 ？	30.40	$3-94$	15	11	25.37	3－09	15	10	15.03	2－02
\because	$?$	62.50	－ 105	15	ε	74.63	25－105	15	7	68.20	21－104
95	5	78.10	$20-103$	15	5	30.6	4－102	15	A	62.53	$26-105$
15	3	53.77	3－97	15	2	73.03	$43-105$	15	1	74.47	30－104

to be a fruit-flavored (other than lemon -ime) dimension with three products-Cherry, Grape, and orange--loading heavily and two products--Root Beer and Jumon-Jime-iocding slightiy. Although not instructed to do so, the subjects sarer th rave used javor as matrr ritaria in judging similarities resulting

 Irf ituctod imenomerty of each other, In this inutance, the fourth dim-

 (Ther, inis factar could aisen me interpreter as a mirue factor for diet "ps"; hut :ncoue ot the owitericr ust for chooshe dimmeioraljt\%, was not jnes din tir rotation.
\qquad

Tor puxnow or woth scalinc onchnicues is to orvan a mometrical tepre-

of satern! comatative critriz of :alicit: cless validitu, face valjditu,

(1) nhe criturion of cress validiza 2melics consistency of resules ecross rendications or perose sulgrouns of the samo popu? cition. In this instance, two soparnte seft of data applicable to each tochninue were oriminaly collectec. When amal. sod separately, the binary date yielded almost identicel th nee dimensional romeptual mans for tre two groups However, the mans derivad forn the two sets of ranik orcier data, omile similar in the
 youtionships (intarmant distances) between the prochucts.
(2) Results of a study have face validity if on inspection they are simila to whet are might expect thon to be. A priong, wre hyothesized that
 dimaraion witi Cone and Severan at the onposite erds, a diet dimension, and
 not intarpretabie, thus hoviro no face velidity. or the othor hand, the binary
 shace. If who whld have monthe aizel wat the cola-iemon dimrnsion as lieing
 interretimg tho frurch dimansion an a niet dimenain--would heve almost wactly

 Ear: umbr ias:。

 mans vere ver" nearl" the same as thos winanse my the ojnery sading method.
 our a nujori dimensions of cona, fruit ilavor, arim diat.

 finst easme could ine due to the diffrimet analyc procedures of the two

 difgrsnces in tige data collection teciniciss. Goth retwods recuire consistenc:

 the tost in alout ter mirutes anc aitorbarcis indicsind that they were ahle to
 DII suthris gemerail. :"sed tha sam criteria or at least juiged the same pairs to be similar mozt of the time. In contrast, the rank order task was very difficult. On the averege, the tasi requized forty-five minutes to complete and all tine subjerts steted trat the: might have chenged criteria during the course of the task. Subjects further indicated that they did not nelfave ther would ir consision over trials, a fonct we verified by reneat testing.
 "o denmatrete the persen of actweer individuri consistency, the everage rank undor farge to tie porsch orogram) ard the ronge DE tric rank orderings

CTICTUSEM!

T.int+ntions 0 +rer Mindr?

Second, this technique is only applicable in those instances where Linary responses are appropriate. other forms of associative data are not directiv usable because of the need to form a frequency distribution of responses. Furtier, preference type data, often used in marketing applications of multidimensional scaling could not be scaled with this technique because the responses would not be binary.

Finally, this method also surfers from the problem of lack of invariance common in the nonmetric multidimensional scaling teciniques. Since the resuits of this technioue are unique only up to aifine transformations, the axes chosen are somewhat arbitrary. Furcher, these is no exact criteria for chosing the number of dimensions. However, the criteria that do exist for this method are perhaps better substantiated than the criteria for other methods. Additionally, choice of the number of dimensions has little effect on the product positions on each dimension.

Summary and Implications

The implications for marketing research are many. The costs associated with binary data collection would be less. Iess time is required per individual and compliance to cooperate in the task js higher; both should yield lower costs. Tins, even i_{i}^{f} binary data and ordinal data produced identical results, the use of binary techniques would be advantageous from a cost-benefit point of view.

Somewhat similar to cost effectiveness is the task effectiveness of this method. It is easier to maintain concentration for shorter tasks, all things else being ecual. Further, considerably more information can be obtained in comparable time periods. Because the task difficulty is lower, within individual consistency will be higher.
ysird, monmetrin meibouts ark vesmen an oriourion that minimizes some
 if tho uncierloins mode? (dinersional A ? zo reitic) is incorrect. rino use rf the zernuone: iistrikuticys of thu inaz\% dete represents a method

 \#nall , Eince mamktinc mescaxct tumicali.. involvos large stimilus sets,

REFERENCES

1．Beals，Richarí，David F．Hrariz，and Amos Tversky，＂Foundations of Multicimersional Scalirc，＂Esvchological Review， 75 （1968）， 127－42．

2．Burt，Cyviz．The Factors of the irind Fondon：The University of Londor Fress， 19 月．

3．Burt，Cirij，＂pre Factor Analysis of Qualtative Date，＂The B－itish Joumal cepsicholozical，Statistical Section，3（1050），166－85．

4．Scicart，Carl，and Gale roung，＂rhe Approwimation df One Matrix ky Another of Lower Fanke＂Esvchonetrika， 1 （September 1936），211－18．

5．Green，paui F．，Voram Wird，and ixun K．Jsin，＂ßnalyzing preempesponse Data in Markėing posearch，＂Tourral of Marketing Restarch，X （February 1073），45－52．

6．Guttman，Louis，＂A Basis for Scaling Quajitative Data，＂American Sociological Review，c（194i），133－50．

7．Krustai，J．B．，＂inutidimensional Sctuine bu ovtimizing Goodness of Mit to a Mometric Hypothesis，＂syçmetriks， 29°（March 190́4）， 1－27．
\qquad ，＂Monmetric multidimensional Sca！ing：A Nunerical Method，＂ Psichometrike， 25 （vuns 1954），115－29．
 A New irpe of Furderental Mescurestent：＂Journal of Mathematical Psycinolory，2（1254），1－27．

 VIII（hovemier as7a），48imai．

13．Shepart，Foger H．，Wrotrir Structures ir Drdirai Mata，＂Journal of Biatrematical Fsveiciocu， 3 （1905），2e7－315．
12. \qquad ，＂位trntion ind the Mrirje structure at the stimulus Space．＂ irumal of iacriematical vevinaloriv： 1 （：964），5月－5\％．

ここ。 \qquad
 With rn Unimoun Distance Function．$\overline{\text { an }}$ ，＂Evchometrjka， 27 （1562）， $125-40$ ．
36. \qquad ，＂The Arteivsis of Proximities：Miltidimensional Scajong with an ƯManown Distance Euiction．II，＂Esychometrika， 27 （ 5852 ），215－46．
15. ，A．Nimball Forrice，and Sara Pethinerlove，Multidimensicnal

16. Sheth, Jagdish N., "A Factor Analytical Model of Brand Loyalty," Journal of Marketing Research, V (November 1968), 395-404.
17. ", "Using Factor Analysis to Estimate Parameters," Journal of the American Statistical Association, 64 (September 1969), 808-22.
18. Torgerson, W. S., "Multidimensional Scaling of Similarity," Psychometrika, 30 (1965), 379-93.
19. "Multidimensional Scaling: Theory and Method," Psychometrika, 17 (1952), 401-19.
20. \qquad , Theory and Methods of Scaiing. New York: John Wiley \& Sons, Inc., 1958.
21. Tucker, L. R., "Determination of Parameters of a Functional Relation by Factor Analysis," Psychometrika, 23 (1958), 19-23.
22. \qquad , and S. Messick, "An Individual Differences Model for Multidimensional Scaling," Psychometrika, 28'(1963), 333-67.
23. Young, Forest w., and W. S. Torgerson, "A FORTRAN IV Program for Nonmetric Multidimensional Scaling Analysis," Benavioral Science, 12 (November 1967), 498.

$$
]
$$

